Multi-trapdoor Commitments and Their Applications to Proofs of Knowledge Secure Under Concurrent Man-in-the-Middle Attacks
نویسنده
چکیده
We introduce the notion of multi-trapdoor commitments which is a stronger form of trapdoor commitment schemes. We then construct two very efficient instantiations of multi-trapdoor commitment schemes, one based on the Strong RSA Assumption and the other on the Strong Diffie-Hellman Assumption. The main application of our new notion is the construction of a compiler that takes any proof of knowledge and transforms it into one which is secure against a concurrent man-in-the-middle attack (in the common reference string model). When using our specific implementations, this compiler is very efficient (requires no more than four exponentiations) and maintains the round complexity of the original proof of knowledge. The main practical applications of our results are concurrently secure identification protocols. For these applications our results are the first simple and efficient solutions based on the Strong RSA or Diffie-Hellman
منابع مشابه
Efficient Statistical Zero-Knowledge Authentication Protocols for Smart Cards Secure Against Active & Concurrent Attacks
We construct statistical zero-knowledge authentication protocols for smart cards based on general assumptions. The main protocol is only secure against active attacks, but we present a modification based on trapdoor commitments that can resist concurrent attacks as well. Both protocols are instantiated using lattice-based primitives, which are conjectured to be secure against quantum attacks. W...
متن کاملConstant-Round Concurrent Non-Malleable Commitments and Decommitments
In this paper we consider commitment schemes that are secure against concurrent poly-time man-in-the-middle (cMiM) attacks. Under such attacks, two possible notions of security for commitment schemes have been proposed in the literature: concurrent nonmalleability with respect to commitment and concurrent non-malleability with respect to decommitment (i.e., opening). After the original notion o...
متن کاملAdaptive and Concurrent Secure Computation from New Adaptive, Non-Malleable Commitments
We present a unified approach for obtaining general secure computation that achieves adaptiveUniversally Composable (UC)-security. Using our approach we essentially obtain all previous results on adaptive concurrent secure computation, both in relaxed models (e.g., quasi-polynomial time simulation), as well as trusted setup models (e.g., the CRS model, the imperfect CRS model). This provides co...
متن کاملAdaptive and Concurrent Secure Computation from New Adaptive, Non-malleable Commitments
We present a unified approach for obtaining general secure computation that achieves adaptive-Universally Composable (UC)-security. Using our approach we essentially obtain all previous results on adaptive concurrent secure computation, both in relaxed models (e.g., quasi-polynomial time simulation), as well as trusted setup models (e.g., the CRS model, the imperfect CRS model). This provides c...
متن کاملConcurrent Non-Malleable Commitments (and More) in 3 Rounds
The round complexity of commitment schemes secure against man-in-the-middle attacks has been the focus of extensive research for about 25 years. The recent breakthrough of Goyal, Pandey and Richelson [STOC 2016] showed that 3 rounds are sufficient for (one-left, one-right) non-malleable commitments. This result matches a lower bound of [Pas13]. The state of affairs leaves still open the intrigu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004